VALUEBI

Is it possible to reach a 25% biobased carbon share in plastics?

Laua Wiman, Kirsi Immonen, Anna Leinonen, Katri Valkokari & Peter Ylén VTT Technical Research Centre of Finland

"What is the effect on land use for food production?"

"How does recycling affect the picture?"

"Is the target feasible when plastics demand keeps growing?"

Research aim and approach

- Coarse high-level assessment of the feasibility of the 25% target
- **Hypothetical scenarios:** how *could* the material flows look like? What would be their implications?
- Internal consistency, and comprehensive account of possible biobased material sources
- Results give ballpark numerical grounds for assessing feasibility and analysing social-technical scenarios further

Why 25%?

- **EU target** for 2050 is net zero GHG emissions
- According to Plastics Europe and SystemIQ scenario that means 25% feedstock via sustainable bio-based materials or captured carbon and hydrogen [1] [2]

The material flow system and some of its open questions [1]

Takeaways:

- Even in high-demand scenarios, the land required for raw materials only reached **max 0.6% of global agricultural land**.
- Secondary material inputs *per source* can remain relatively low also in high demand scenarios. For instance, in an all-of-the-above scenario (last row in table), 25% of materials would need to originate from each recycling source.
- As part of a broader sustainability transformation, land use by livestock could downscale to make space for raw materials production and more ecologically efficient (nutrition per ecological impact) foods.

Limitations and future research:

- The analysis is **hypothetical and exploratory**
- We did not explicate **causal chains** that would explain transitions
- The realism of each scenario can be further assessed. Possibilities include **morphological analysis** (checking for narrative consistency) and **simulation modeling** (explicating and testing complex causal chains).

	Land use		Share of raw materials from primary sources		Share of materials from secondary sources			Consumption		
Scenario	Land use for biobased plastics	Share of agricultural land used for raw materials	Agricultural land use ^	Other e.g. algae, CO ₂ ^	Side / waste streams	Mechanical recycling *	Chemical recycling *	Total plastics consumption	Biobased share	Biobased consumption
Today's state	0.03 Mkm ²	0.06%	6.4 Mt, ~100%?	0	0	0	~0?	400 Mt	~1.6%	~ 6.4 Mt?
Only primary production	0.23 Mkm ²	0.5%	50 Mt, 50% from each		0	0	0	400 Mt	25%	100 Mt
Double consumption, recycling emphasis	0.03 Mkm ²	0.06%	6.4 Mt, 3.2%	0	64.5 Mt, 32.3% from		n each	800 Mt	25%	200 Mt
Double consumption, chemical recycling is delayed	0.03 Mkm ²	0.06%	6.4 Mt, 3.2%	0	98.4 Mt, 49.2% from each		0	800 Mt	25%	200 Mt
Double consumption, primary emphasis	0.33 Mkm ²	0.6%	70 Mt, 35%	from each	20	20 Mt, 10% from each		800 Mt	25%	200 Mt
Double consumption, all-of- the-above	0.23 Mkm ²	0.5%	50 Mt, 25% from each					800 Mt	25%	200 Mt

Assumptions:

- It takes 0.45 ha of land to produce 1 t of raw materials for biobased plastics (0.0045 MKm² for 1Mt of raw materials) [3]
- Total global agricultural land is 48 Mkm²[4]

^percentages are shares of consumption, as with the secondary sources

*can be read as the mechanical and chemical recycling rate

Blue: current state; Yellow: current demand levels; Orange: double demand levels

Global agricultural land use, reproduced from [4]

References

[1] Plastics Europe (2023)

https://plasticseurope.org/changingplasticsforgood/the-plastics-transition/ [2] SystemIQ (2022)

https://plasticseurope.org/changingplasticsforgood/reshaping-plastics/ [3] European Bioplastics (2024) https://www.european-

bioplastics.org/market/

[4] Our World in Data (2024) https://ourworldindata.org/land-use

