Exploring drivers and barriers of Biocomposites’ circularity

Kirsi Immonen, Katri Valkokari / VTT
Kirsi.immonen@vtt.fi

One of the major global challenges we face in the materials science is the transformation from fossil, petrochemistry based polymeric materials to the sustainable, renewable and carbon-binding materials.

Facts about fossil-based plastics:
- Produced 8.3 billion tons since 1950’s
- Yearly production 400 million tons and doubled by 2040
- Corresponds 4% of climate change now and 15% in 2050
- Recycled globally only 9%

Facts about bioplastics:
- Yearly production 2.4 million tons (<1% of fossil based)
- Not really recycled yet!
- Now mainly used as energy!

Plastics with fossil-based raw materials have impact on:
- Chemical pollution - Novel entities
- Climate change
- Freshwater change
Bioplastics and biocomposites help to reduce those changes, but can increase issues related to land use

-> CIRCULAR ECONOMY IS NEEDED FOR ALL MATERIALS

Biocomposites

Plastic or Bioplastic + **Wood fiber or Natural fiber**

Enable bio-based plastic use in demanding high-performance applications such as:
- Transportation
- Construction
- Furniture
- Sport equipment etc.

Drives and barriers

Drivers

Plastics with fossil-based raw materials have impact on:
- Chemical pollution - Novel entities
- Climate change
- Freshwater change

Bioplastics and biocomposites help to reduce those changes, but can increase issues related to land use

-> CIRCULAR ECONOMY IS NEEDED FOR ALL MATERIALS

SystemIQ (2022) ReShaping Plastics – Pathways to Circular, Climate Neutral Plastic System in Europe

Scenario
- **Base Case (current system, no change)**
 - Virgin fossil plastic use, Mt: 44
 - Actions related to circular economy of plastic materials:
 - The existing regulations (2021) are in force and executed
 - Current Actions Scenario
 - Virgin fossil plastic use, Mt: 37
 - Actions related to circular economy of plastic materials:
 - Reduction & Substitution Scenario
 - Virgin fossil plastic use, Mt: 29
 - Recycling Scenario
 - Virgin fossil plastic use, Mt: 24
 - Recycling Scenario
 - Virgin fossil plastic use, Mt: 20
 - Net-Zero System Change Scenario
 - Virgin fossil plastic use, Mt: 11
 - Net-Zero System Change Scenario
 - Virgin fossil plastic use, Mt: 0

BARRIERS

- How to secure volumes sufficient for cost-effective recycling?
- Should there be own EU level recycling labels for biocomposites/bioplastics?
- Is reuse of biocomposite products possible?
- New product innovations for recycled materials?
- Best recycling method for biocomposite/bioplastic – mechanical, chemical, enzymatic?
- How to deal with wide material base in biocomposites in recycling?
- Who will recycle biocomposites and bioplastics – existing or novel companies?
- Best way for biocomposite’s identification from other recycled material streams?
